Title: | 'ForLion' Algorithm to Find D-Optimal Designs for Experiments |
---|---|
Description: | Designing experimental plans that involve both discrete and continuous factors with general parametric statistical models using the 'ForLion' algorithm and 'EW ForLion' algorithm. The algorithms will search for locally optimal designs and EW optimal designs under the D-criterion. Reference: Huang, Y., Li, K., Mandal, A., & Yang, J., (2024)<doi:10.1007/s11222-024-10465-x>. |
Authors: | Yifei Huang [aut], Siting Lin [aut, cre], Jie Yang [aut] |
Maintainer: | Siting Lin <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.1.0 |
Built: | 2025-02-12 10:20:03 UTC |
Source: | https://github.com/cran/ForLion |
function to generate random initial design with design points and the approximate allocation
design_initial_self( k.continuous, factor.level, lvec, uvec, bvec, h.func, link = "continuation", Fi.func = Fi_MLM_func, delta = 1e-06, epsilon = 1e-12, maxit = 1000 )
design_initial_self( k.continuous, factor.level, lvec, uvec, bvec, h.func, link = "continuation", Fi.func = Fi_MLM_func, delta = 1e-06, epsilon = 1e-12, maxit = 1000 )
k.continuous |
number of continuous variables |
factor.level |
lower, upper limit of continuous variables, and discrete levels of categorical variables, continuous factors come first |
lvec |
lower limit of continuous variables |
uvec |
upper limit of continuous variables |
bvec |
assumed parameter values of beta |
h.func |
function, is used to transfer the design point to model matrix (e.g. add interaction term, add intercept) |
link |
link function, default "continuation", other options "baseline", "adjacent" and "cumulative" |
Fi.func |
function, is used to calculate Fisher inforamtion for a design point - default to be Fi_MLM_func() in the package |
delta |
tuning parameter, the distance threshold, || x_i(0) - x_j(0) || >= delta |
epsilon |
or determining f.det > 0 numerically, f.det <= epsilon will be considered as f.det <= 0 |
maxit |
maximum number of iterations |
X matrix of initial design point
p0 initial random approximate allocation
f.det the determinant of Fisher information matrix for the random initial design
k.continuous.temp=5 link.temp = "cumulative" n.factor.temp = c(0,0,0,0,0,2) # 1 discrete factor w/ 2 levels + 5 continuous ## Note: Always put continuous factors ahead of discrete factors, ## pay attention to the order of coefficients paring with predictors lvec.temp = c(-25,-200,-150,-100,0,-1) uvec.temp = c(25,200,0,0,16,1) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } bvec.temp=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) design_initial_self(k.continuous=k.continuous.temp, factor.level=n.factor.temp, lvec=lvec.temp, uvec=uvec.temp, bvec=bvec.temp, h.func=hfunc.temp, link=link.temp)
k.continuous.temp=5 link.temp = "cumulative" n.factor.temp = c(0,0,0,0,0,2) # 1 discrete factor w/ 2 levels + 5 continuous ## Note: Always put continuous factors ahead of discrete factors, ## pay attention to the order of coefficients paring with predictors lvec.temp = c(-25,-200,-150,-100,0,-1) uvec.temp = c(25,200,0,0,16,1) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } bvec.temp=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) design_initial_self(k.continuous=k.continuous.temp, factor.level=n.factor.temp, lvec=lvec.temp, uvec=uvec.temp, bvec=bvec.temp, h.func=hfunc.temp, link=link.temp)
function to generate discrete uniform random variables for initial random design points in ForLion
discrete_rv_self(n, xlist)
discrete_rv_self(n, xlist)
n |
number of discrete random variables |
xlist |
list of levels for variables to be generated |
list of discrete uniform random variables
n=3 #three discrete random variables xlist=list(c(-1,1),c(-1,1),c(-1,0,1)) #two binary and one three-levels discrete_rv_self(n, xlist)
n=3 #three discrete random variables xlist=list(c(-1,1),c(-1,1),c(-1,0,1)) #two binary and one three-levels discrete_rv_self(n, xlist)
Function to calculate du/dx in the gradient of d(x, Xi), will be used in ForLion_MLM_func() function, details see Appendix C in Huang, Li, Mandal, Yang (2024)
dprime_func_self( xi, bvec, h.func, h.prime, inv.F.mat, Ux, link = "continuation", k.continuous )
dprime_func_self( xi, bvec, h.func, h.prime, inv.F.mat, Ux, link = "continuation", k.continuous )
xi |
a vector of design point |
bvec |
parameter of the multinomial logistic regression model |
h.func |
function, is used to transfer xi to model matrix (e.g. add interaction term, add intercept) |
h.prime |
function, is used to find dX/dx |
inv.F.mat |
inverse of F_Xi matrix, inverse of fisher information of current design w/o new point |
Ux |
U_x matrix in the algorithm, get from Fi_MLM_func() function |
link |
multinomial link function, default is"continuation", other choices "baseline", "cumulative", and "adjacent" |
k.continuous |
number of continuous factors |
dU/dx in the gradient of sensitivity function d(x, Xi)
function to generate random initial design with design points and the approximate allocation (For EW)
EW_design_initial_self( k.continuous, factor.level, lvec, uvec, bvec_matrix, h.func, link = "continuation", EW_Fi.func = EW_Fi_MLM_func, delta = 1e-06, epsilon = 1e-12, maxit = 1000 )
EW_design_initial_self( k.continuous, factor.level, lvec, uvec, bvec_matrix, h.func, link = "continuation", EW_Fi.func = EW_Fi_MLM_func, delta = 1e-06, epsilon = 1e-12, maxit = 1000 )
k.continuous |
number of continuous variables |
factor.level |
lower, upper limit of continuous variables, and discrete levels of categorical variables, continuous factors come first |
lvec |
lower limit of continuous variables |
uvec |
upper limit of continuous variables |
bvec_matrix |
the matrix of the bootstrap parameter values of beta |
h.func |
function, is used to transfer the design point to model matrix (e.g. add interaction term, add intercept) |
link |
link function, default "continuation", other options "baseline", "adjacent" and "cumulative" |
EW_Fi.func |
function, is used to calculate the Expectation of Fisher information for a design point - default to be EW_Fi_MLM_func() in the package |
delta |
tuning parameter, the distance threshold, || x_i(0) - x_j(0) || >= delta |
epsilon |
determining f.det > 0 numerically, f.det <= epsilon will be considered as f.det <= 0 |
maxit |
maximum number of iterations |
X matrix of initial design point
p0 initial random approximate allocation
f.det the determinant of Fisher information matrix for the random initial design
k.continuous.temp=1 link.temp = "continuation" n.factor.temp = c(0) factor.level.temp = list(c(80,200)) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } lvec.temp = 80 uvec.temp = 200 bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_design_initial_self(k.continuous=k.continuous.temp, factor.level=n.factor.temp, lvec=lvec.temp, uvec=uvec.temp, bvec_matrix=bvec_bootstrap, h.func=hfunc.temp, link=link.temp)
k.continuous.temp=1 link.temp = "continuation" n.factor.temp = c(0) factor.level.temp = list(c(80,200)) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } lvec.temp = 80 uvec.temp = 200 bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_design_initial_self(k.continuous=k.continuous.temp, factor.level=n.factor.temp, lvec=lvec.temp, uvec=uvec.temp, bvec_matrix=bvec_bootstrap, h.func=hfunc.temp, link=link.temp)
Function to calculate dEu/dx in the gradient of d(x, Xi), will be used in EW_ForLion_MLM_func() function
EW_dprime_func_self( xi, bvec_matrix, h.func, h.prime, inv.F.mat, EUx, link = "continuation", k.continuous )
EW_dprime_func_self( xi, bvec_matrix, h.func, h.prime, inv.F.mat, EUx, link = "continuation", k.continuous )
xi |
a vector of design point |
bvec_matrix |
the matrix of the bootstrap parameter values of beta |
h.func |
function, is used to transfer xi to model matrix (e.g. add interaction term, add intercept) |
h.prime |
function, is used to find dX/dx |
inv.F.mat |
inverse of F_Xi matrix, inverse of the Expectation of fisher information of current design w/o new point |
EUx |
EU_x matrix in the algorithm, get from EW_Fi_MLM_func() function |
link |
link multinomial link function, default is"continuation", other choices "baseline", "cumulative", and "adjacent" |
k.continuous |
number of continuous factors |
dEU/dx in the gradient of sensitivity function d(x, Xi)
Function to generate the Expectation of fisher information at one design point xi for multinomial logit models
EW_Fi_MLM_func(X_x, bvec_matrix, link = "continuation")
EW_Fi_MLM_func(X_x, bvec_matrix, link = "continuation")
X_x |
model matrix for a specific design point x_i, X_x=h.func(xi) |
bvec_matrix |
the matrix of the bootstrap parameter values of beta |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
F_x Fisher information matrix at x_i
EU_x U matrix for calculation the Expectation of Fisher information matrix at x_i
link.temp = "continuation" xi.temp=c(80) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } X_xtemp=hfunc.temp(xi.temp) bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_Fi_MLM_func(X_x=X_xtemp, bvec_matrix=bvec_bootstrap, link=link.temp)
link.temp = "continuation" xi.temp=c(80) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } X_xtemp=hfunc.temp(xi.temp) bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_Fi_MLM_func(X_x=X_xtemp, bvec_matrix=bvec_bootstrap, link=link.temp)
EW ForLion algorithm to find EW D-optimal design for GLM models with mixed factors, reference: . Factors may include discrete factors with finite number of distinct levels and continuous factors with specified interval range (min, max), continuous factors, if any, must serve as main-effects only, allowing merging points that are close enough.Continuous factors first then discrete factors, model parameters should in the same order of factors.
EW_ForLion_GLM_Optimal( n.factor, factor.level, hfunc, joint_Func_b, Lowerbounds, Upperbounds, link, reltol = 1e-05, rel.diff = 0, optim_grad = TRUE, maxit = 100, random = FALSE, nram = 3, logscale = FALSE, rowmax = NULL, Xini = NULL )
EW_ForLion_GLM_Optimal( n.factor, factor.level, hfunc, joint_Func_b, Lowerbounds, Upperbounds, link, reltol = 1e-05, rel.diff = 0, optim_grad = TRUE, maxit = 100, random = FALSE, nram = 3, logscale = FALSE, rowmax = NULL, Xini = NULL )
n.factor |
vector of numbers of distinct levels, "0" indicates continuous factors, "0"s always come first, "2" or above indicates discrete factor, "1" is not allowed |
factor.level |
list of distinct levels, (min, max) for continuous factor, continuous factors first, should be the same order as n.factor |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
joint_Func_b |
The prior joint probability distribution of the parameters |
Lowerbounds |
The lower limit of the prior distribution for each parameter |
Upperbounds |
The upper limit of the prior distribution for each parameter |
link |
link function, default "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", "identity" |
reltol |
the relative convergence tolerance, default value 1e-5 |
rel.diff |
points with distance less than that will be merged, default value 0 |
optim_grad |
TRUE or FALSE, default is FALSE, whether to use the analytical gradient function or numerical gradient for searching optimal new design point |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run EW lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run EW lift-one nram number of initial proportion p00, default is 3 |
logscale |
TRUE or FALSE, if TRUE then the EW ForLion will run EW lift-one with logscale, which is EW_liftoneDoptimal_log_GLM_func(); if FALSE then ForLion will run EW lift-one without logscale, which is EW_liftoneDoptimal_GLM_func() |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL will generate random initial design points |
m number of design points
x.factor matrix with rows indicating design point
p EW D-optimal approximate allocation
det Optimal determinant of Fisher information matrix
x.model model matrix X
E_w vector of E_w such that E_w=diag(p*E_w)
convergence TRUE or FALSE
min.diff the minimum Euclidean distance between design points
x.close a pair of design points with minimum distance
#Example Crystallography Experiment hfunc.temp = function(y) {c(y,1)} # y -> h(y)=(y1,1) n.factor.temp = c(0) # 1 continuous factors factor.level.temp = list(c(-1,1)) link.temp="logit" paras_lowerbound<-c(4,-3) paras_upperbound<-c(10,3) gjoint_b<- function(x) { Func_b<-1/(prod(paras_upperbound-paras_lowerbound)) ##the prior distributions are follow uniform distribution return(Func_b) } EW_ForLion_GLM_Optimal(n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, reltol=1e-2, rel.diff=0.01, optim_grad=FALSE, maxit=500, random=FALSE, nram=3, logscale=FALSE,Xini=NULL)
#Example Crystallography Experiment hfunc.temp = function(y) {c(y,1)} # y -> h(y)=(y1,1) n.factor.temp = c(0) # 1 continuous factors factor.level.temp = list(c(-1,1)) link.temp="logit" paras_lowerbound<-c(4,-3) paras_upperbound<-c(10,3) gjoint_b<- function(x) { Func_b<-1/(prod(paras_upperbound-paras_lowerbound)) ##the prior distributions are follow uniform distribution return(Func_b) } EW_ForLion_GLM_Optimal(n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, reltol=1e-2, rel.diff=0.01, optim_grad=FALSE, maxit=500, random=FALSE, nram=3, logscale=FALSE,Xini=NULL)
EW ForLion function for multinomial logit models
EW_ForLion_MLM_Optimal( J, n.factor, factor.level, hfunc, h.prime, bvec_matrix, link = "continuation", EW_Fi.func = EW_Fi_MLM_func, delta = 1e-05, epsilon = 1e-12, reltol = 1e-05, rel.diff = 0, maxit = 100, random = FALSE, nram = 3, rowmax = NULL, Xini = NULL, random.initial = FALSE, nram.initial = 3, optim_grad = FALSE )
EW_ForLion_MLM_Optimal( J, n.factor, factor.level, hfunc, h.prime, bvec_matrix, link = "continuation", EW_Fi.func = EW_Fi_MLM_func, delta = 1e-05, epsilon = 1e-12, reltol = 1e-05, rel.diff = 0, maxit = 100, random = FALSE, nram = 3, rowmax = NULL, Xini = NULL, random.initial = FALSE, nram.initial = 3, optim_grad = FALSE )
J |
number of response levels in the multinomial logit model |
n.factor |
vector of numbers of distinct levels, "0" indicates continuous factors, "0"s always come first, "2" or above indicates discrete factor, "1" is not allowed |
factor.level |
list of distinct levels, (min, max) for continuous factor, continuous factors first, should be the same order as n.factor |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
h.prime |
function to obtain dX/dx |
bvec_matrix |
the matrix of the bootstrap parameter values of beta |
link |
link function, default "continuation", other choices "baseline", "cumulative", and "adjacent" |
EW_Fi.func |
function to calculate row-wise Expectation of Fisher information Fi, default is EW_Fi_MLM_func |
delta |
tuning parameter, the generated design pints distance threshold, || x_i(0) - x_j(0) || >= delta, default 1e-5 |
epsilon |
determining f.det > 0 numerically, f.det <= epsilon will be considered as f.det <= 0, default 1e-12 |
reltol |
the relative convergence tolerance, default value 1e-5 |
rel.diff |
points with distance less than that will be merged, default value 0 |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run EW lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run EW lift-one nram number of initial proportion p00, default is 3 |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL will generate random initial design points |
random.initial |
TRUE or FALSE, if TRUE then the function will run EW ForLion with additional "nram.initial" number of random initial design points, default FALSE |
nram.initial |
when random.initial == TRUE, the function will run EW ForLion algorithm with nram.initial number of initial design points Xini, default is 3 |
optim_grad |
TRUE or FALSE, default is FALSE, whether to use the analytical gradient function or numerical gradient for searching optimal new design point |
m the number of design points
x.factor matrix of experimental factors with rows indicating design point
p the reported EW D-optimal approximate allocation
det the determinant of the maximum Expectation of Fisher information
convergence TRUE or FALSE, whether converge
min.diff the minimum Euclidean distance between design points
x.close pair of design points with minimum distance
itmax iteration of the algorithm
J=3 p=5 hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } #hfunc is a 3*5 matrix, transfer x design matrix to model matrix for emergence of flies example hprime.temp = function(y){ matrix(data=c(0, 1, 2*y, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), nrow=3, ncol=5, byrow=TRUE) } link.temp = "continuation" n.factor.temp = c(0) # 1 continuous factor no discrete factor in EW ForLion factor.level.temp = list(c(80,200)) #boundary for continuous parameter in Forlion bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_ForLion_MLM_Optimal(J=J, n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp,h.prime=h.prime.temp, bvec_matrix=bvec_bootstrap,rel.diff=1, link=link.temp, optim_grad=FALSE)
J=3 p=5 hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } #hfunc is a 3*5 matrix, transfer x design matrix to model matrix for emergence of flies example hprime.temp = function(y){ matrix(data=c(0, 1, 2*y, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), nrow=3, ncol=5, byrow=TRUE) } link.temp = "continuation" n.factor.temp = c(0) # 1 continuous factor no discrete factor in EW ForLion factor.level.temp = list(c(80,200)) #boundary for continuous parameter in Forlion bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_ForLion_MLM_Optimal(J=J, n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp,h.prime=h.prime.temp, bvec_matrix=bvec_bootstrap,rel.diff=1, link=link.temp, optim_grad=FALSE)
EW Lift-one algorithm for D-optimal approximate design
EW_liftoneDoptimal_GLM_func( X, E_w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
EW_liftoneDoptimal_GLM_func( X, E_w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
E_w |
Diagonal of E_W matrix in Fisher information matrix, can be calculated EW_Xw_maineffects_self() function in the ForLion package |
reltol |
reltol The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run with additional "nram" number of initial allocation p00, default to be TRUE |
nram |
When random == TRUE, the function will generate nram number of initial points, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
p EW D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported EW D-optimal approximate allocation
Maximum The maximum of the determinant of the Fisher information matrix of the reported EW D-optimal design
convergence Convergence TRUE or FALSE
itmax number of the iteration
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1) link.temp="logit" paras_lowerbound<-rep(-Inf, 4) paras_upperbound<-rep(Inf, 4) gjoint_b<- function(x) { mu1 <- -0.5; sigma1 <- 1 mu2 <- 0.5; sigma2 <- 1 mu3 <- 1; sigma3 <- 1 mu0 <- 1; sigma0 <- 1 d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1) d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2) d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3) d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0) return(d1 * d2 * d3 * d4) } x.temp=matrix(data=c(-2,-1,-3,2,-1,-3,-2,1,-3,2,1,-3,-2,-1,3,2,-1,3,-2,1,3,2,1,3),ncol=3,byrow=TRUE) m.temp=dim(x.temp)[1] # number of design points p.temp=length(paras_upperbound) # number of predictors Xmat.temp=matrix(0, m.temp, p.temp) EW_wvec.temp=rep(0, m.temp) for(i in 1:m.temp) { htemp=EW_Xw_maineffects_self(x=x.temp[i,],joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, h.func=hfunc.temp); Xmat.temp[i,]=htemp$X; EW_wvec.temp[i]=htemp$E_w; } EW_liftoneDoptimal_GLM_func(X=Xmat.temp, E_w=EW_wvec.temp, reltol=1e-8, maxit=1000, random=TRUE, nram=3, p00=NULL)
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1) link.temp="logit" paras_lowerbound<-rep(-Inf, 4) paras_upperbound<-rep(Inf, 4) gjoint_b<- function(x) { mu1 <- -0.5; sigma1 <- 1 mu2 <- 0.5; sigma2 <- 1 mu3 <- 1; sigma3 <- 1 mu0 <- 1; sigma0 <- 1 d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1) d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2) d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3) d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0) return(d1 * d2 * d3 * d4) } x.temp=matrix(data=c(-2,-1,-3,2,-1,-3,-2,1,-3,2,1,-3,-2,-1,3,2,-1,3,-2,1,3,2,1,3),ncol=3,byrow=TRUE) m.temp=dim(x.temp)[1] # number of design points p.temp=length(paras_upperbound) # number of predictors Xmat.temp=matrix(0, m.temp, p.temp) EW_wvec.temp=rep(0, m.temp) for(i in 1:m.temp) { htemp=EW_Xw_maineffects_self(x=x.temp[i,],joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, h.func=hfunc.temp); Xmat.temp[i,]=htemp$X; EW_wvec.temp[i]=htemp$E_w; } EW_liftoneDoptimal_GLM_func(X=Xmat.temp, E_w=EW_wvec.temp, reltol=1e-8, maxit=1000, random=TRUE, nram=3, p00=NULL)
EW Lift-one algorithm for D-optimal approximate design in log scale
EW_liftoneDoptimal_log_GLM_func( X, E_w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
EW_liftoneDoptimal_log_GLM_func( X, E_w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
E_w |
Diagonal of E_W matrix in Fisher information matrix, can be calculated EW_Xw_maineffects_self() function in the ForLion package |
reltol |
reltol The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run with additional "nram" number of initial allocation p00, default to be TRUE |
nram |
When random == TRUE, the function will generate nram number of initial points, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
p EW D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported EW D-optimal approximate allocation
Maximum The maximum of the determinant of the Fisher information matrix of the reported EW D-optimal design
convergence Convergence TRUE or FALSE
itmax number of the iteration
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1) link.temp="logit" paras_lowerbound<-rep(-Inf, 4) paras_upperbound<-rep(Inf, 4) gjoint_b<- function(x) { mu1 <- -0.5; sigma1 <- 1 mu2 <- 0.5; sigma2 <- 1 mu3 <- 1; sigma3 <- 1 mu0 <- 1; sigma0 <- 1 d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1) d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2) d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3) d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0) return(d1 * d2 * d3 * d4) } x.temp=matrix(data=c(-2,-1,-3,2,-1,-3,-2,1,-3,2,1,-3,-2,-1,3,2,-1,3,-2,1,3,2,1,3), ncol=3,byrow=TRUE) m.temp=dim(x.temp)[1] # number of design points p.temp=length(paras_upperbound) # number of predictors Xmat.temp=matrix(0, m.temp, p.temp) EW_wvec.temp=rep(0, m.temp) for(i in 1:m.temp) { htemp=EW_Xw_maineffects_self(x=x.temp[i,],joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, h.func=hfunc.temp); Xmat.temp[i,]=htemp$X; EW_wvec.temp[i]=htemp$E_w; } EW_liftoneDoptimal_GLM_func(X=Xmat.temp, E_w=EW_wvec.temp, reltol=1e-8, maxit=1000, random=TRUE, nram=3, p00=NULL)
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1) link.temp="logit" paras_lowerbound<-rep(-Inf, 4) paras_upperbound<-rep(Inf, 4) gjoint_b<- function(x) { mu1 <- -0.5; sigma1 <- 1 mu2 <- 0.5; sigma2 <- 1 mu3 <- 1; sigma3 <- 1 mu0 <- 1; sigma0 <- 1 d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1) d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2) d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3) d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0) return(d1 * d2 * d3 * d4) } x.temp=matrix(data=c(-2,-1,-3,2,-1,-3,-2,1,-3,2,1,-3,-2,-1,3,2,-1,3,-2,1,3,2,1,3), ncol=3,byrow=TRUE) m.temp=dim(x.temp)[1] # number of design points p.temp=length(paras_upperbound) # number of predictors Xmat.temp=matrix(0, m.temp, p.temp) EW_wvec.temp=rep(0, m.temp) for(i in 1:m.temp) { htemp=EW_Xw_maineffects_self(x=x.temp[i,],joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, h.func=hfunc.temp); Xmat.temp[i,]=htemp$X; EW_wvec.temp[i]=htemp$E_w; } EW_liftoneDoptimal_GLM_func(X=Xmat.temp, E_w=EW_wvec.temp, reltol=1e-8, maxit=1000, random=TRUE, nram=3, p00=NULL)
function of EW liftone for multinomial logit model
EW_liftoneDoptimal_MLM_func( m, p, Xi, J, thetavec_matrix, link = "continuation", reltol = 1e-05, maxit = 500, p00 = NULL, random = FALSE, nram = 3 )
EW_liftoneDoptimal_MLM_func( m, p, Xi, J, thetavec_matrix, link = "continuation", reltol = 1e-05, maxit = 500, p00 = NULL, random = FALSE, nram = 3 )
m |
number of design points |
p |
number of parameters in the multinomial logit model |
Xi |
model matrix |
J |
number of response levels in the multinomial logit model |
thetavec_matrix |
the matrix of the bootstrap parameter values of beta |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
reltol |
relative tolerance for convergence, default to 1e-5 |
maxit |
the number of maximum iteration, default to 500 |
p00 |
specified initial approximate allocation, default to NULL, if NULL, will generate a random initial approximate allocation |
random |
TRUE or FALSE, if TRUE then the function will run with additional "nram" number of initial allocation p00, default to be TRUE |
nram |
when random == TRUE, the function will generate nram number of initial points, default is 3 |
p reported EW D-optimal approximate allocation
p0 the initial approximate allocation that derived the reported EW D-optimal design
Maximum the maximum of the determinant of the Expectation of Fisher information matrix
Convergence TRUE or FALSE, whether the algorithm converges
itmax, maximum iterations
m=7 p=5 J=3 link.temp = "continuation" factor_x=c(80,100,120,140,160,180,200) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m) for(i in 1:m) { Xi[,,i]=hfunc.temp(factor_x[i]) } bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_liftoneDoptimal_MLM_func(m=m, p=p, Xi=Xi, J=J, thetavec_matrix=bvec_bootstrap, link = "continuation",reltol=1e-5, maxit=500, p00=rep(1/7,7), random=FALSE, nram=3)
m=7 p=5 J=3 link.temp = "continuation" factor_x=c(80,100,120,140,160,180,200) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m) for(i in 1:m) { Xi[,,i]=hfunc.temp(factor_x[i]) } bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162, -0.0535, -0.0274, -0.0096,-0.0291, -0.04, 0.0004, 0.0003, 0.0002, 0.0003, 0.1, -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE) EW_liftoneDoptimal_MLM_func(m=m, p=p, Xi=Xi, J=J, thetavec_matrix=bvec_bootstrap, link = "continuation",reltol=1e-5, maxit=500, p00=rep(1/7,7), random=FALSE, nram=3)
function for calculating X=h(x) and E_w=E(nu(beta^T h(x))) give a design point x=(1,x1,...,xd)^T
EW_Xw_maineffects_self( x, joint_Func_b, Lowerbounds, Upperbounds, link = "logit", h.func = NULL )
EW_Xw_maineffects_self( x, joint_Func_b, Lowerbounds, Upperbounds, link = "logit", h.func = NULL )
x |
x=(x1,...,xd) – design point/experimental setting |
joint_Func_b |
The prior joint probability distribution of the parameters |
Lowerbounds |
The lower limit of the prior distribution for each parameter |
Upperbounds |
The upper limit of the prior distribution for each parameter |
link |
link = "logit" – link function, default: "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log" |
h.func |
function h(x)=(h1(x),...,hp(x)), default (1,x1,...,xd) |
X=h(x)=(h1(x),...,hp(x)) – a row for design matrix
E_w – E(nu(b^t h(x)))
link – link function applied
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1) link.temp="logit" paras_lowerbound<-rep(-Inf, 4) paras_upperbound<-rep(Inf, 4) gjoint_b<- function(x) { mu1 <- -0.5; sigma1 <- 1 mu2 <- 0.5; sigma2 <- 1 mu3 <- 1; sigma3 <- 1 mu0 <- 1; sigma0 <- 1 d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1) d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2) d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3) d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0) return(d1 * d2 * d3 * d4) } x.temp = c(2,1,3) EW_Xw_maineffects_self(x=x.temp,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, h.func=hfunc.temp)
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1) link.temp="logit" paras_lowerbound<-rep(-Inf, 4) paras_upperbound<-rep(Inf, 4) gjoint_b<- function(x) { mu1 <- -0.5; sigma1 <- 1 mu2 <- 0.5; sigma2 <- 1 mu3 <- 1; sigma3 <- 1 mu0 <- 1; sigma0 <- 1 d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1) d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2) d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3) d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0) return(d1 * d2 * d3 * d4) } x.temp = c(2,1,3) EW_Xw_maineffects_self(x=x.temp,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp, h.func=hfunc.temp)
Function to generate fisher information at one design point xi for multinomial logit models
Fi_MLM_func(X_x, bvec, link = "continuation")
Fi_MLM_func(X_x, bvec, link = "continuation")
X_x |
model matrix for a specific design point x_i, X_x=h.func(xi) |
bvec |
beta coefficients in the model |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
F_x Fisher information matrix at x_i
U_x U matrix for calculation of Fisher information matrix at x_i (see Corollary 3.1 in Bu, Majumdar, Yang(2020))
# Reference minimizing surface example in supplementary material # Section S.3 in Huang, Li, Mandal, Yang (2024) xi.temp = c(-1, -25, 199.96, -150, -100, 16) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } X_x.temp = hfunc.temp(xi.temp) bvec.temp = c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) link.temp = "cumulative" Fi_MLM_func(X_x=X_x.temp, bvec=bvec.temp, link=link.temp)
# Reference minimizing surface example in supplementary material # Section S.3 in Huang, Li, Mandal, Yang (2024) xi.temp = c(-1, -25, 199.96, -150, -100, 16) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } X_x.temp = hfunc.temp(xi.temp) bvec.temp = c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) link.temp = "cumulative" Fi_MLM_func(X_x=X_x.temp, bvec=bvec.temp, link=link.temp)
ForLion algorithm to find D-optimal design for GLM models with mixed factors, reference: Section 4 in Huang, Li, Mandal, Yang (2024). Factors may include discrete factors with finite number of distinct levels and continuous factors with specified interval range (min, max), continuous factors, if any, must serve as main-effects only, allowing merging points that are close enough. Continuous factors first then discrete factors, model parameters should in the same order of factors.
ForLion_GLM_Optimal( n.factor, factor.level, hfunc, bvec, link, reltol = 1e-05, rel.diff = 0, maxit = 100, random = FALSE, nram = 3, logscale = FALSE, rowmax = NULL, Xini = NULL )
ForLion_GLM_Optimal( n.factor, factor.level, hfunc, bvec, link, reltol = 1e-05, rel.diff = 0, maxit = 100, random = FALSE, nram = 3, logscale = FALSE, rowmax = NULL, Xini = NULL )
n.factor |
vector of numbers of distinct levels, "0" indicates continuous factors, "0"s always come first, "2" or above indicates discrete factor, "1" is not allowed |
factor.level |
list of distinct levels, (min, max) for continuous factor, continuous factors first, should be the same order as n.factor |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
bvec |
assumed parameter values of model parameters beta, same length of h(y) |
link |
link function, default "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", "identity" |
reltol |
the relative convergence tolerance, default value 1e-5 |
rel.diff |
points with distance less than that will be merged, default value 0 |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
logscale |
TRUE or FALSE, if TRUE then the ForLion will run lift-one with logscale, which is liftoneDoptimal_log_GLM_func(); if FALSE then ForLion will run lift-one without logscale, which is liftoneDoptimal_GLM_func() |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL will generate random initial design points |
m number of design points
x.factor matrix with rows indicating design point
p D-optimal approximate allocation
det Optimal determinant of Fisher information matrix
convergence TRUE or FALSE
min.diff the minimum Euclidean distance between design points
x.close a pair of design points with minimum distance
itmax iteration of the algorithm
#Example 3 in Huang, Li, Mandal, Yang (2024), electrostatic discharge experiment hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) n.factor.temp = c(0, 2, 2, 2, 2) # 1 continuous factor with 4 discrete factors factor.level.temp = list(c(25,45),c(-1,1),c(-1,1),c(-1,1),c(-1,1)) link.temp="logit" b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090) ForLion_GLM_Optimal(n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp, bvec=b.temp, link=link.temp, reltol=1e-2, rel.diff=0.03, maxit=500, random=FALSE, nram=3, logscale=TRUE)
#Example 3 in Huang, Li, Mandal, Yang (2024), electrostatic discharge experiment hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) n.factor.temp = c(0, 2, 2, 2, 2) # 1 continuous factor with 4 discrete factors factor.level.temp = list(c(25,45),c(-1,1),c(-1,1),c(-1,1),c(-1,1)) link.temp="logit" b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090) ForLion_GLM_Optimal(n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp, bvec=b.temp, link=link.temp, reltol=1e-2, rel.diff=0.03, maxit=500, random=FALSE, nram=3, logscale=TRUE)
Function for ForLion algorithm to find D-optimal design under multinomial logit models with mixed factors. Reference Section 3 of Huang, Li, Mandal, Yang (2024). Factors may include discrete factors with finite number of distinct levels and continuous factors with specified interval range (min, max), continuous factors, if any, must serve as main-effects only, allowing merging points that are close enough. Continuous factors first then discrete factors, model parameters should in the same order of factors.
ForLion_MLM_Optimal( J, n.factor, factor.level, hfunc, h.prime, bvec, link = "continuation", Fi.func = Fi_MLM_func, delta = 1e-05, epsilon = 1e-12, reltol = 1e-05, rel.diff = 0, maxit = 100, random = FALSE, nram = 3, rowmax = NULL, Xini = NULL, random.initial = FALSE, nram.initial = 3, optim_grad = FALSE )
ForLion_MLM_Optimal( J, n.factor, factor.level, hfunc, h.prime, bvec, link = "continuation", Fi.func = Fi_MLM_func, delta = 1e-05, epsilon = 1e-12, reltol = 1e-05, rel.diff = 0, maxit = 100, random = FALSE, nram = 3, rowmax = NULL, Xini = NULL, random.initial = FALSE, nram.initial = 3, optim_grad = FALSE )
J |
number of response levels in the multinomial logit model |
n.factor |
vector of numbers of distinct levels, "0" indicates continuous factors, "0"s always come first, "2" or above indicates discrete factor, "1" is not allowed |
factor.level |
list of distinct levels, (min, max) for continuous factor, continuous factors first, should be the same order as n.factor |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
h.prime |
function to obtain dX/dx |
bvec |
assumed parameter values of model parameters beta, same length of h(y) |
link |
link function, default "continuation", other choices "baseline", "cumulative", and "adjacent" |
Fi.func |
function to calculate row-wise Fisher information Fi, default is Fi_MLM_func |
delta |
tuning parameter, the generated design pints distance threshold, || x_i(0) - x_j(0) || >= delta, default 1e-5 |
epsilon |
for determining f.det > 0 numerically, f.det <= epsilon will be considered as f.det <= 0, default 1e-12 |
reltol |
the relative convergence tolerance, default value 1e-5 |
rel.diff |
points with distance less than that will be merged, default value 0 |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL will generate random initial design points |
random.initial |
TRUE or FALSE, if TRUE then the function will run ForLion with additional "nram.initial" number of random initial design points, default FALSE |
nram.initial |
when random.initial == TRUE, the function will run ForLion algorithm with nram.initial number of initial design points Xini, default is 3 |
optim_grad |
TRUE or FALSE, default is FALSE, whether to use the analytical gradient function or numerical gradient for searching optimal new design point |
m the number of design points
x.factor matrix of experimental factors with rows indicating design point
p the reported D-optimal approximate allocation
det the determinant of the maximum Fisher information
convergence TRUE or FALSE, whether converge
min.diff the minimum Euclidean distance between design points
x.close pair of design points with minimum distance
itmax iteration of the algorithm
m=5 p=10 J=5 link.temp = "cumulative" n.factor.temp = c(0,0,0,0,0,2) # 1 discrete factor w/ 2 levels + 5 continuous ## Note: Always put continuous factors ahead of discrete factors, ## pay attention to the order of coefficients paring with predictors factor.level.temp = list(c(-25,25), c(-200,200),c(-150,0),c(-100,0),c(0,16),c(-1,1)) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } bvec.temp=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) h.prime.temp = NULL #use numerical gradient (optim_grad=FALSE) ForLion_MLM_Optimal(J=J, n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp, h.prime=h.prime.temp, bvec=bvec.temp, link=link.temp, optim_grad=FALSE)
m=5 p=10 J=5 link.temp = "cumulative" n.factor.temp = c(0,0,0,0,0,2) # 1 discrete factor w/ 2 levels + 5 continuous ## Note: Always put continuous factors ahead of discrete factors, ## pay attention to the order of coefficients paring with predictors factor.level.temp = list(c(-25,25), c(-200,200),c(-150,0),c(-100,0),c(0,16),c(-1,1)) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } bvec.temp=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) h.prime.temp = NULL #use numerical gradient (optim_grad=FALSE) ForLion_MLM_Optimal(J=J, n.factor=n.factor.temp, factor.level=factor.level.temp, hfunc=hfunc.temp, h.prime=h.prime.temp, bvec=bvec.temp, link=link.temp, optim_grad=FALSE)
Approximation to exact design algorithm for generalized linear model
GLM_Exact_Design( k.continuous, design_x, design_p, det.design, p, ForLion, bvec, joint_Func_b, Lowerbounds, Upperbounds, rel.diff, L, N, hfunc, link )
GLM_Exact_Design( k.continuous, design_x, design_p, det.design, p, ForLion, bvec, joint_Func_b, Lowerbounds, Upperbounds, rel.diff, L, N, hfunc, link )
k.continuous |
number of continuous factors |
design_x |
the matrix with rows indicating design point which we got from the approximate design |
design_p |
D-optimal approximate allocation |
det.design |
the determinant of D-optimal approximate allocation |
p |
number of parameters |
ForLion |
TRUE or FALSE, TRUE: this approximate design was generated by ForLion algorithm, FALSE: this approximate was generated by EW ForLion algorithm |
bvec |
assumed parameter values of model parameters beta, same length of h(y) |
joint_Func_b |
The prior joint probability distribution of the parameters |
Lowerbounds |
The lower limit of the prior distribution for each parameter |
Upperbounds |
The upper limit of the prior distribution for each parameter |
rel.diff |
points with distance less than that will be merged |
L |
rounding factor |
N |
total number of observations |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
link |
link function, default "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", "identity" |
x.design matrix with rows indicating design point
ni.design EW D-optimal or D-optimal exact allocation
rel.efficiency relative efficiency of the Exact and Approximate Designs
k.continuous=1 design_x=matrix(c(25, -1, -1,-1, -1 , 25, -1, -1, -1, 1, 25, -1, -1, 1, -1, 25, -1, -1, 1, 1, 25, -1, 1, -1, -1, 25, -1, 1, -1, 1, 25, -1, 1, 1, -1, 25, -1, 1, 1, 1, 25, 1, -1, 1, -1, 25, 1, 1, -1, -1, 25, 1, 1, -1, 1, 25, 1, 1, 1, -1, 25, 1, 1, 1, 1, 38.9479, -1, 1, 1, -1, 34.0229, -1, 1, -1, -1, 35.4049, -1, 1, -1, 1, 37.1960, -1, -1, 1, -1, 33.0884, -1, 1, 1, 1),nrow=18,ncol=5,byrow = TRUE) hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) link.temp="logit" design_p=c(0.0848, 0.0875, 0.0410, 0.0856, 0.0690, 0.0515, 0.0901, 0.0845, 0.0743, 0.0356, 0.0621, 0.0443, 0.0090, 0.0794, 0.0157, 0.0380, 0.0455, 0.0022) det.design=4.552715e-06 paras_lowerbound<-c(0.25,1,-0.3,-0.3,0.1,0.35,-8.0) paras_upperbound<-c(0.45,2,-0.1,0.0,0.4,0.45,-7.0) gjoint_b<- function(x) { Func_b<-1/(prod(paras_upperbound-paras_lowerbound)) ##the prior distributions are follow uniform distribution return(Func_b) } GLM_Exact_Design(k.continuous=k.continuous,design_x=design_x, design_p=design_p,det.design=det.design,p=7,ForLion=FALSE,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound,rel.diff=0,L=1, N=100,hfunc=hfunc.temp,link=link.temp)
k.continuous=1 design_x=matrix(c(25, -1, -1,-1, -1 , 25, -1, -1, -1, 1, 25, -1, -1, 1, -1, 25, -1, -1, 1, 1, 25, -1, 1, -1, -1, 25, -1, 1, -1, 1, 25, -1, 1, 1, -1, 25, -1, 1, 1, 1, 25, 1, -1, 1, -1, 25, 1, 1, -1, -1, 25, 1, 1, -1, 1, 25, 1, 1, 1, -1, 25, 1, 1, 1, 1, 38.9479, -1, 1, 1, -1, 34.0229, -1, 1, -1, -1, 35.4049, -1, 1, -1, 1, 37.1960, -1, -1, 1, -1, 33.0884, -1, 1, 1, 1),nrow=18,ncol=5,byrow = TRUE) hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) link.temp="logit" design_p=c(0.0848, 0.0875, 0.0410, 0.0856, 0.0690, 0.0515, 0.0901, 0.0845, 0.0743, 0.0356, 0.0621, 0.0443, 0.0090, 0.0794, 0.0157, 0.0380, 0.0455, 0.0022) det.design=4.552715e-06 paras_lowerbound<-c(0.25,1,-0.3,-0.3,0.1,0.35,-8.0) paras_upperbound<-c(0.45,2,-0.1,0.0,0.4,0.45,-7.0) gjoint_b<- function(x) { Func_b<-1/(prod(paras_upperbound-paras_lowerbound)) ##the prior distributions are follow uniform distribution return(Func_b) } GLM_Exact_Design(k.continuous=k.continuous,design_x=design_x, design_p=design_p,det.design=det.design,p=7,ForLion=FALSE,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound,rel.diff=0,L=1, N=100,hfunc=hfunc.temp,link=link.temp)
Lift-one algorithm for D-optimal approximate design
liftoneDoptimal_GLM_func( X, w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
liftoneDoptimal_GLM_func( X, w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
w |
Diagonal of W matrix in Fisher information matrix, can be calculated Xw_maineffects_self() function in the ForLion package |
reltol |
The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run with additional "nram" number of initial allocation p00, default to be TRUE |
nram |
When random == TRUE, the function will generate nram number of initial points, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
p D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported D-optimal approximate allocation
Maximum The maximum of the determinant of the Fisher information matrix of the reported D-optimal design
convergence Convergence TRUE or FALSE
itmax number of the iteration
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) link.temp="logit" x.temp = matrix(data=c(25.00000,1,-1,1,-1,25.00000,1,1,1,-1,32.06741,-1,1,-1,1,40.85698, -1,1,1,-1,28.86602,-1,1,-1,-1,29.21486,-1,-1,1,1,25.00000,1,1,1,1, 25.00000,1,1,-1,-1), ncol=5, byrow=TRUE) b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090) X.mat = matrix(,nrow=8, ncol=7) w.vec = rep(NA,8) for(i in 1:8) { htemp=Xw_maineffects_self(x=x.temp[i,], b=b.temp, link=link.temp, h.func=hfunc.temp); X.mat[i,]=htemp$X; w.vec[i]=htemp$w; }; liftoneDoptimal_GLM_func(X=X.mat, w=w.vec, reltol=1e-5, maxit=500, random=TRUE, nram=3, p00=NULL)
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) link.temp="logit" x.temp = matrix(data=c(25.00000,1,-1,1,-1,25.00000,1,1,1,-1,32.06741,-1,1,-1,1,40.85698, -1,1,1,-1,28.86602,-1,1,-1,-1,29.21486,-1,-1,1,1,25.00000,1,1,1,1, 25.00000,1,1,-1,-1), ncol=5, byrow=TRUE) b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090) X.mat = matrix(,nrow=8, ncol=7) w.vec = rep(NA,8) for(i in 1:8) { htemp=Xw_maineffects_self(x=x.temp[i,], b=b.temp, link=link.temp, h.func=hfunc.temp); X.mat[i,]=htemp$X; w.vec[i]=htemp$w; }; liftoneDoptimal_GLM_func(X=X.mat, w=w.vec, reltol=1e-5, maxit=500, random=TRUE, nram=3, p00=NULL)
Lift-one algorithm for D-optimal approximate design in log scale
liftoneDoptimal_log_GLM_func( X, w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
liftoneDoptimal_log_GLM_func( X, w, reltol = 1e-05, maxit = 100, random = FALSE, nram = 3, p00 = NULL )
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
w |
Diagonal of W matrix in Fisher information matrix, can be calculated Xw_maineffects_self() function in the ForLion package |
reltol |
The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run with additional "nram" number of initial allocation p00, default to be TRUE |
nram |
When random == TRUE, the function will generate nram number of initial points, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
p D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported D-optimal approximate allocation
Maximum The maximum of the determinant of the Fisher information matrix of the reported D-optimla design
convergence Convergence TRUE or FALSE
itmax number of the iteration
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) link.temp="logit" x.temp = matrix(data=c(25.00000,1,-1,1,-1,25.00000,1,1,1,-1,32.06741,-1,1,-1,1,40.85698, -1,1,1,-1,28.86602,-1,1,-1,-1,29.21486,-1,-1,1,1,25.00000,1,1,1,1, 25.00000,1,1,-1,-1), ncol=5, byrow=TRUE) b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090) X.mat = matrix(,nrow=8, ncol=7) w.vec = rep(NA,8) for(i in 1:8) { htemp=Xw_maineffects_self(x=x.temp[i,], b=b.temp, link=link.temp, h.func=hfunc.temp); X.mat[i,]=htemp$X; w.vec[i]=htemp$w; }; liftoneDoptimal_log_GLM_func(X=X.mat, w=w.vec, reltol=1e-5, maxit=500, random=TRUE, nram=3, p00=NULL)
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) link.temp="logit" x.temp = matrix(data=c(25.00000,1,-1,1,-1,25.00000,1,1,1,-1,32.06741,-1,1,-1,1,40.85698, -1,1,1,-1,28.86602,-1,1,-1,-1,29.21486,-1,-1,1,1,25.00000,1,1,1,1, 25.00000,1,1,-1,-1), ncol=5, byrow=TRUE) b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090) X.mat = matrix(,nrow=8, ncol=7) w.vec = rep(NA,8) for(i in 1:8) { htemp=Xw_maineffects_self(x=x.temp[i,], b=b.temp, link=link.temp, h.func=hfunc.temp); X.mat[i,]=htemp$X; w.vec[i]=htemp$w; }; liftoneDoptimal_log_GLM_func(X=X.mat, w=w.vec, reltol=1e-5, maxit=500, random=TRUE, nram=3, p00=NULL)
function of liftone for multinomial logit model
liftoneDoptimal_MLM_func( m, p, Xi, J, thetavec, link = "continuation", reltol = 1e-05, maxit = 500, p00 = NULL, random = FALSE, nram = 3 )
liftoneDoptimal_MLM_func( m, p, Xi, J, thetavec, link = "continuation", reltol = 1e-05, maxit = 500, p00 = NULL, random = FALSE, nram = 3 )
m |
number of design points |
p |
number of parameters in the multinomial logit model |
Xi |
model matrix |
J |
number of response levels in the multinomial logit model |
thetavec |
model parameter |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
reltol |
relative tolerance for convergence, default to 1e-5 |
maxit |
the number of maximum iteration, default to 500 |
p00 |
specified initial approximate allocation, default to NULL, if NULL, will generate a random initial approximate allocation |
random |
TRUE or FALSE, if TRUE then the function will run with additional "nram" number of initial allocation p00, default to be TRUE |
nram |
when random == TRUE, the function will generate nram number of initial points, default is 3 |
p reported D-optimal approximate allocation
p0 the initial approximate allocation that derived the reported D-optimal design
Maximum the maximum of the determinant of the Fisher information matrix
Convergence TRUE or FALSE, whether the algorithm converges
itmax, maximum iterations
m=5 p=10 J=5 factor_x = matrix(c(-1,-25,199.96,-150,-100,16,1,23.14,196.35,0,-100, 16,1,-24.99,199.99,-150,0,16,-1,25,-200,0,0,16,-1,-25,-200,-150,0,16),ncol=6,byrow=TRUE) Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } for(i in 1:m) { Xi[,,i]=hfunc.temp(factor_x[i,]) } thetavec=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) liftoneDoptimal_MLM_func(m=m,p=p,Xi=Xi,J=J,thetavec=thetavec, link="cumulative",p00=rep(1/5,5), random=FALSE)
m=5 p=10 J=5 factor_x = matrix(c(-1,-25,199.96,-150,-100,16,1,23.14,196.35,0,-100, 16,1,-24.99,199.99,-150,0,16,-1,25,-200,0,0,16,-1,-25,-200,-150,0,16),ncol=6,byrow=TRUE) Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m) hfunc.temp = function(y){ if(length(y) != 6){stop("Input should have length 6");} model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE) model.mat[5,]=0 model.mat[1:4,1:4] = diag(4) model.mat[1:4, 5] =((-1)*y[6]) model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE) return(model.mat) } for(i in 1:m) { Xi[,,i]=hfunc.temp(factor_x[i,]) } thetavec=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917) liftoneDoptimal_MLM_func(m=m,p=p,Xi=Xi,J=J,thetavec=thetavec, link="cumulative",p00=rep(1/5,5), random=FALSE)
Approximation to exact design algorithm for multinomial logit model
MLM_Exact_Design( J, k.continuous, design_x, design_p, det.design, p, ForLion, bvec, bvec_matrix, rel.diff, L, N, hfunc, link )
MLM_Exact_Design( J, k.continuous, design_x, design_p, det.design, p, ForLion, bvec, bvec_matrix, rel.diff, L, N, hfunc, link )
J |
number of response levels in the multinomial logit model |
k.continuous |
number of continuous factors |
design_x |
the matrix with rows indicating design point which we got from the approximate design |
design_p |
D-optimal approximate allocation |
det.design |
the determinant of D-optimal approximate allocation |
p |
number of parameters |
ForLion |
TRUE or FALSE, TRUE: this approximate design was generated by ForLion algorithm, FALSE: this approximate was generated by EW ForLion algorithm |
bvec |
If ForLion==TRUE assumed parameter values of model parameters beta, same length of h(y) |
bvec_matrix |
If ForLion==FALSE the matrix of the bootstrap parameter values of beta |
rel.diff |
points with distance less than that will be merged |
L |
rounding factor |
N |
total number of observations |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
link |
link function, default "continuation", other choices "baseline", "cumulative", and "adjacent" |
x.design matrix with rows indicating design point
ni.design EW D-optimal or D-optimal exact allocation
rel.efficiency relative efficiency of the Exact and Approximate Designs
J=3 k.continuous=1 design_x<-c(0.0000,103.5451,149.2355) design_p<-c(0.2027, 0.3981, 0.3992) det.design=54016609 p=5 theta = c(-1.935, -0.02642, 0.0003174, -9.159, 0.06386) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } link.temp = "continuation" MLM_Exact_Design(J=J, k.continuous=k.continuous,design_x=design_x, design_p=design_p,det.design=det.design,p=p,ForLion=TRUE,bvec=theta, rel.diff=1,L=0.5,N=1000,hfunc=hfunc.temp,link=link.temp)
J=3 k.continuous=1 design_x<-c(0.0000,103.5451,149.2355) design_p<-c(0.2027, 0.3981, 0.3992) det.design=54016609 p=5 theta = c(-1.935, -0.02642, 0.0003174, -9.159, 0.06386) hfunc.temp = function(y){ matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE) } link.temp = "continuation" MLM_Exact_Design(J=J, k.continuous=k.continuous,design_x=design_x, design_p=design_p,det.design=det.design,p=p,ForLion=TRUE,bvec=theta, rel.diff=1,L=0.5,N=1000,hfunc=hfunc.temp,link=link.temp)
function to calculate w = nu(eta) given eta for cauchit link
nu_cauchit_self(x)
nu_cauchit_self(x)
x |
a list of eta - X*beta |
diagonal element of W matrix which is nu(eta)
eta = c(1,2,3,4) nu_cauchit_self(eta)
eta = c(1,2,3,4) nu_cauchit_self(eta)
Function to calculate w = nu(eta) given eta for identity link
nu_identity_self(x)
nu_identity_self(x)
x |
Numeric vector of eta, eta = X*beta. |
A numeric vector representing the diagonal elements of the W matrix (nu(eta)).
eta = c(1,2,3,4) nu_identity_self(eta)
eta = c(1,2,3,4) nu_identity_self(eta)
Function to calculate w = nu(eta) given eta for log link
nu_log_self(x)
nu_log_self(x)
x |
Numeric vector of eta, eta = X*beta. |
A numeric vector representing the diagonal elements of the W matrix (nu(eta)).
eta = c(1,2,3,4) nu_log_self(eta)
eta = c(1,2,3,4) nu_log_self(eta)
function to calculate w = nu(eta) given eta for logit link
nu_logit_self(x)
nu_logit_self(x)
x |
vector of eta, eta=X*beta |
diagonal element of W matrix which is nu(eta)
eta = c(1,2,3,4) nu_logit_self(eta)
eta = c(1,2,3,4) nu_logit_self(eta)
function to calculate w = nu(eta) given eta for loglog link
nu_loglog_self(x)
nu_loglog_self(x)
x |
vector of eta, eta=X*beta |
diagonal element of W matrix which is nu(eta)
eta = c(1,2,3,4) nu_loglog_self(eta)
eta = c(1,2,3,4) nu_loglog_self(eta)
function to calculate w = nu(eta) given eta for probit link
nu_probit_self(x)
nu_probit_self(x)
x |
vector of eta, eta=X*beta |
diagonal element of W matrix which is nu(eta)
eta = c(1,2,3,4) nu_probit_self(eta)
eta = c(1,2,3,4) nu_probit_self(eta)
Function to calculate first derivative of nu function given eta for cauchit link
nu1_cauchit_self(x)
nu1_cauchit_self(x)
x |
vector of eta, eta=X*beta |
the first derivative of nu function given eta for cauchit link
eta = c(1,2,3,4) nu1_cauchit_self(eta)
eta = c(1,2,3,4) nu1_cauchit_self(eta)
function to calculate first derivative of nu function given eta for identity link
nu1_identity_self(x)
nu1_identity_self(x)
x |
vector of eta, eta=X*beta |
the first derivative of nu function given eta for identity link
eta = c(1,2,3,4) nu1_identity_self(eta)
eta = c(1,2,3,4) nu1_identity_self(eta)
function to calculate first derivative of nu function given eta for log link
nu1_log_self(x)
nu1_log_self(x)
x |
vector of eta, eta=X*beta |
the first derivative of nu function given eta for log link
eta = c(1,2,3,4) nu1_log_self(eta)
eta = c(1,2,3,4) nu1_log_self(eta)
function to calculate the first derivative of nu function given eta for logit link
nu1_logit_self(x)
nu1_logit_self(x)
x |
vector of eta, eta=X*beta |
the first derivative of nu function given eta for logit link
eta = c(1,2,3,4) nu1_logit_self(eta)
eta = c(1,2,3,4) nu1_logit_self(eta)
function to calculate the first derivative of nu function given eta for log-log link
nu1_loglog_self(x)
nu1_loglog_self(x)
x |
vector of eta, eta=X*beta |
the first derivative of nu function given eta for log-log link
eta = c(1,2,3,4) nu1_loglog_self(eta)
eta = c(1,2,3,4) nu1_loglog_self(eta)
function to calculate the first derivative of nu function given eta for probit link
nu1_probit_self(x)
nu1_probit_self(x)
x |
vector of eta, eta=X*beta |
the first derivative of nu function for probit link
eta = c(1,2,3,4) nu1_probit_self(eta)
eta = c(1,2,3,4) nu1_probit_self(eta)
function to calculate the second derivative of nu function given eta for cauchit link
nu2_cauchit_self(x)
nu2_cauchit_self(x)
x |
vector of eta, eta=X*beta |
the second derivative of nu function for cauchit link
eta = c(1,2,3,4) nu2_cauchit_self(eta)
eta = c(1,2,3,4) nu2_cauchit_self(eta)
function to calculate the second derivative of nu function given eta for identity link
nu2_identity_self(x)
nu2_identity_self(x)
x |
vector of eta, eta=X*beta |
the second derivative of nu function for identity link
eta = c(1,2,3,4) nu2_identity_self(eta)
eta = c(1,2,3,4) nu2_identity_self(eta)
function to calculate the second derivative of nu function given eta for log link
nu2_log_self(x)
nu2_log_self(x)
x |
vector of eta, eta=X*beta |
the second derivative of nu function for log link
eta = c(1,2,3,4) nu2_log_self(eta)
eta = c(1,2,3,4) nu2_log_self(eta)
function to calculate the second derivative of nu function given eta for logit link
nu2_logit_self(x)
nu2_logit_self(x)
x |
vector of eta, eta=X*beta |
the second derivative of nu function for logit link
eta = c(1,2,3,4) nu2_logit_self(eta)
eta = c(1,2,3,4) nu2_logit_self(eta)
function to calculate the second derivative of nu function given eta for loglog link
nu2_loglog_self(x)
nu2_loglog_self(x)
x |
vector of eta, eta=X*beta |
the second derivative of nu function for loglog link
eta = c(1,2,3,4) nu2_loglog_self(eta)
eta = c(1,2,3,4) nu2_loglog_self(eta)
function to calculate the second derivative of nu function given eta for probit link
nu2_probit_self(x)
nu2_probit_self(x)
x |
vector of eta, eta=X*beta |
the second derivative of nu function for probit link
eta = c(1,2,3,4) nu2_probit_self(eta)
eta = c(1,2,3,4) nu2_probit_self(eta)
Custom print method for a list containing design information.
## S3 method for class 'design_output' print(x, ...)
## S3 method for class 'design_output' print(x, ...)
x |
An object of class 'design_output'. |
... |
Additional arguments (ignored). |
Invisibly returns 'x'.
Custom print method for objects of class 'list_output'.
## S3 method for class 'list_output' print(x, ...)
## S3 method for class 'list_output' print(x, ...)
x |
An object of class 'list_output'. |
... |
Additional arguments (ignored). |
Invisibly returns 'x' (the input object).
SVD Inverse Of A Square Matrix This function returns the inverse of a matrix using singular value decomposition. If the matrix is a square matrix, this should be equivalent to using the solve function. If the matrix is not a square matrix, then the result is the Moore-Penrose pseudo inverse.
svd_inverse(x)
svd_inverse(x)
x |
the matrix for calculation of inverse |
the inverse of the matrix x
x = diag(4) svd_inverse(x)
x = diag(4) svd_inverse(x)
Generate GLM random initial designs within ForLion algorithm
xmat_discrete_self(xlist, rowmax = NULL)
xmat_discrete_self(xlist, rowmax = NULL)
xlist |
a list of factor levels within ForLion algorithm, for example, a binary factor might be c(-1,1), a continuous factor within range of (25,45) will be c(25, 45). |
rowmax |
maximum number of rows of the design matrix |
design matrix of all possible combinations of discrete factors levels with min and max of the continuous factors.
#define list of factor levels for one continuous factor, four binary factors factor.level.temp = list(c(25,45),c(-1,1),c(-1,1),c(-1,1),c(-1,1)) xmat_discrete_self(xlist = factor.level.temp)
#define list of factor levels for one continuous factor, four binary factors factor.level.temp = list(c(25,45),c(-1,1),c(-1,1),c(-1,1),c(-1,1)) xmat_discrete_self(xlist = factor.level.temp)
function for calculating X=h(x) and w=nu(beta^T h(x)) given a design point x = (x1,...,xd)^T
Xw_maineffects_self(x, b, link = "logit", h.func = NULL)
Xw_maineffects_self(x, b, link = "logit", h.func = NULL)
x |
x=(x1,...,xd) – design point/experimental setting |
b |
b=(b1,...,bp) – assumed parameter values |
link |
link = "logit" – link function, default: "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log" |
h.func |
function h(x)=(h1(x),...,hp(x)), default (1,x1,...,xd) |
X=h(x)=(h1(x),...,hp(x)) – a row for design matrix
w – nu(b^t h(x))
link – link function applied
# y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) in hfunc hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; link.temp="logit" x.temp = c(25,1,1,1,1) b.temp = c(-7.533386, 1.746778, -0.1937022, -0.09704664, 0.1077859, 0.2729715, 0.4293171) Xw_maineffects_self(x.temp, b.temp, link=link.temp, h.func=hfunc.temp)
# y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) in hfunc hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; link.temp="logit" x.temp = c(25,1,1,1,1) b.temp = c(-7.533386, 1.746778, -0.1937022, -0.09704664, 0.1077859, 0.2729715, 0.4293171) Xw_maineffects_self(x.temp, b.temp, link=link.temp, h.func=hfunc.temp)